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F. Lacroix m, D. Lam bc, S. Lammers br, G. Landsberg by, P. Lebrun t, W.M. Lee ax, A. Leflat al, J. Lellouch q, J. Leveque as,
J. Li bz, L. Li av, Q.Z. Li ax, S.M. Lietti e, J.G.R. Lima az, D. Lincoln ax, J. Linnemann bm, V.V. Lipaev am, R. Lipton ax, Y. Liu g,
Z. Liu f, A. Lobodenko an, M. Lokajicek k, P. Love ap, H.J. Lubatti cd, R. Luna c, A.L. Lyon ax, A.K.A. Maciel b, D. Mackin cb,
R.J. Madaras at, P. Mättig z, C. Magass u, A. Magerkurth bl, P.K. Mal cd, H.B. Malbouisson c, S. Malik bo, V.L. Malyshev aj,
H.S. Mao ax, Y. Maravin bg, B. Martin n, R. McCarthy bt, A. Melnitchouk bn, L. Mendoza h, P.G. Mercadante e,

0370-2693/$ – see front matter Published by Elsevier B.V.
doi:10.1016/j.physletb.2008.05.037



Author's personal copy

2 DØ Collaboration / Physics Letters B 665 (2008) 1–8

M. Merkin al, K.W. Merritt ax, A. Meyer u, J. Meyer v, T. Millet t, J. Mitrevski br, J. Molina c, R.K. Mommsen ar,
N.K. Mondal ac, R.W. Moore f, T. Moulik bf, G.S. Muanza t, M. Mulders ax, M. Mulhearn br, O. Mundal v, L. Mundim c,
E. Nagy o, M. Naimuddin ax, M. Narain by, N.A. Naumann ai, H.A. Neal bl, J.P. Negret h, P. Neustroev an, H. Nilsen w,
H. Nogima c, S.F. Novaes e, T. Nunnemann y, V. O’Dell ax, D.C. O’Neil f, G. Obrant an, C. Ochando p, D. Onoprienko bg,
N. Oshima ax, N. Osman aq, J. Osta bc, R. Otec j, G.J. Otero y Garzón ax, M. Owen ar, P. Padley cb, M. Pangilinan by,
N. Parashar bd, S.-J. Park bs, S.K. Park ae, J. Parsons br, R. Partridge by, N. Parua bb, A. Patwa bu, G. Pawloski cb,
B. Penning w, M. Perfilov al, K. Peters ar, Y. Peters z, P. Pétroff p, M. Petteni aq, R. Piegaia a, J. Piper bm, M.-A. Pleier v,
P.L.M. Podesta-Lerma ag,3, V.M. Podstavkov ax, Y. Pogorelov bc, M.-E. Pol b, P. Polozov ak, B.G. Pope bm, A.V. Popov am,
C. Potter f, W.L. Prado da Silva c, H.B. Prosper aw, S. Protopopescu bu, J. Qian bl, A. Quadt v,4, B. Quinn bn, A. Rakitine ap,
M.S. Rangel b, K. Ranjan ab, P.N. Ratoff ap, P. Renkel ca, S. Reucroft bk, P. Rich ar, J. Rieger bb, M. Rijssenbeek bt,
I. Ripp-Baudot s, F. Rizatdinova bx, S. Robinson aq, R.F. Rodrigues c, M. Rominsky bw, C. Royon r, P. Rubinov ax,
R. Ruchti bc, G. Safronov ak, G. Sajot n, A. Sánchez-Hernández ag, M.P. Sanders q, A. Santoro c, G. Savage ax, L. Sawyer bh,
T. Scanlon aq, D. Schaile y, R.D. Schamberger bt, Y. Scheglov an, H. Schellman ba, T. Schliephake z, C. Schwanenberger ar,
A. Schwartzman bp, R. Schwienhorst bm, J. Sekaric aw, H. Severini bw, E. Shabalina ay, M. Shamim bg,∗, V. Shary r,
A.A. Shchukin am, R.K. Shivpuri ab, V. Siccardi s, V. Simak j, V. Sirotenko ax, P. Skubic bw, P. Slattery bs, D. Smirnov bc,
G.R. Snow bo, J. Snow bv, S. Snyder bu, S. Söldner-Rembold ar, L. Sonnenschein q, A. Sopczak ap, M. Sosebee bz,
K. Soustruznik i, B. Spurlock bz, J. Stark n, J. Steele bh, V. Stolin ak, D.A. Stoyanova am, J. Strandberg bl, S. Strandberg ao,
M.A. Strang bq, E. Strauss bt, M. Strauss bw, R. Ströhmer y, D. Strom ba, L. Stutte ax, S. Sumowidagdo aw, P. Svoisky bc,
A. Sznajder c, P. Tamburello as, A. Tanasijczuk a, W. Taylor f, J. Temple as, B. Tiller y, F. Tissandier m, M. Titov r,
V.V. Tokmenin aj, T. Toole bi, I. Torchiani w, T. Trefzger x, D. Tsybychev bt, B. Tuchming r, C. Tully bp, P.M. Tuts br,
R. Unalan bm, L. Uvarov an, S. Uvarov an, S. Uzunyan az, B. Vachon f, P.J. van den Berg ah, R. Van Kooten bb,
W.M. van Leeuwen ah, N. Varelas ay, E.W. Varnes as, I.A. Vasilyev am, M. Vaupel z, P. Verdier t, L.S. Vertogradov aj,
M. Verzocchi ax, F. Villeneuve-Seguier aq, P. Vint aq, P. Vokac j, E. Von Toerne bg, M. Voutilainen bp,5, R. Wagner bp,
H.D. Wahl aw, L. Wang bi, M.H.L.S. Wang ax, J. Warchol bc, G. Watts cd, M. Wayne bc, G. Weber x, M. Weber ax,
L. Welty-Rieger bb, A. Wenger w,6, N. Wermes v, M. Wetstein bi, A. White bz, D. Wicke z, G.W. Wilson bf,
S.J. Wimpenny av, M. Wobisch bh, D.R. Wood bk, T.R. Wyatt ar, Y. Xie by, S. Yacoob ba, R. Yamada ax, M. Yan bi,
T. Yasuda ax, Y.A. Yatsunenko aj, K. Yip bu, H.D. Yoo by, S.W. Youn ba, J. Yu bz, A. Zatserklyaniy az, C. Zeitnitz z, T. Zhao cd,
B. Zhou bl, J. Zhu bt, M. Zielinski bs, D. Zieminska bb, A. Zieminski bb,�, L. Zivkovic br, V. Zutshi az, E.G. Zverev al

a Universidad de Buenos Aires, Buenos Aires, Argentina
b LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
c Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
d Universidade Federal do ABC, Santo André, Brazil
e Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo, Brazil
f University of Alberta, Edmonton, Alberta, and Simon Fraser University, Burnaby, British Columbia, and York University, Toronto, Ontario, and McGill University, Montreal, Quebec, Canada
g University of Science and Technology of China, Hefei, People’s Republic of China
h Universidad de los Andes, Bogotá, Colombia
i Center for Particle Physics, Charles University, Prague, Czech Republic
j Czech Technical University, Prague, Czech Republic
k Center for Particle Physics, Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
l Universidad San Francisco de Quito, Quito, Ecuador
m LPC, Université Blaise Pascal, CNRS/IN2P3, Clermont, France
n LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, France
o CPPM, IN2P3/CNRS, Université de la Méditerranée, Marseille, France
p LAL, Université Paris-Sud, IN2P3/CNRS, Orsay, France
q LPNHE, IN2P3/CNRS, Universités Paris VI and VII, Paris, France
r DAPNIA/Service de Physique des Particules, CEA, Saclay, France
s IPHC, Université Louis Pasteur et Université de Haute Alsace, CNRS/IN2P3, Strasbourg, France
t IPNL, Université Lyon 1, CNRS/IN2P3, Villeurbanne, France and Université de Lyon, Lyon, France
u III. Physikalisches Institut A, RWTH Aachen, Aachen, Germany
v Physikalisches Institut, Universität Bonn, Bonn, Germany
w Physikalisches Institut, Universität Freiburg, Freiburg, Germany
x Institut für Physik, Universität Mainz, Mainz, Germany
y Ludwig-Maximilians-Universität München, München, Germany
z Fachbereich Physik, University of Wuppertal, Wuppertal, Germany
aa Panjab University, Chandigarh, India
ab Delhi University, Delhi, India
ac Tata Institute of Fundamental Research, Mumbai, India
ad University College Dublin, Dublin, Ireland
ae Korea Detector Laboratory, Korea University, Seoul, Republic of Korea
af SungKyunKwan University, Suwon, Republic of Korea
ag CINVESTAV, Mexico City, Mexico
ah FOM-Institute NIKHEF and University of Amsterdam/NIKHEF, Amsterdam, The Netherlands
ai Radboud University Nijmegen/NIKHEF, Nijmegen, The Netherlands
aj Joint Institute for Nuclear Research, Dubna, Russia
ak Institute for Theoretical and Experimental Physics, Moscow, Russia
al Moscow State University, Moscow, Russia



Author's personal copy

DØ Collaboration / Physics Letters B 665 (2008) 1–8 3

am Institute for High Energy Physics, Protvino, Russia
an Petersburg Nuclear Physics Institute, St. Petersburg, Russia
ao Lund University, Lund, and Royal Institute of Technology and Stockholm University, Stockholm, and Uppsala University, Uppsala, Sweden
ap Lancaster University, Lancaster, United Kingdom
aq Imperial College, London, United Kingdom
ar University of Manchester, Manchester, United Kingdom
as University of Arizona, Tucson, AZ 85721, USA
at Lawrence Berkeley National Laboratory and University of California, Berkeley, CA 94720, USA
au California State University, Fresno, CA 93740, USA
av University of California, Riverside, CA 92521, USA
aw Florida State University, Tallahassee, FL 32306, USA
ax Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
ay University of Illinois at Chicago, Chicago, IL 60607, USA
az Northern Illinois University, DeKalb, IL 60115, USA
ba Northwestern University, Evanston, IL 60208, USA
bb Indiana University, Bloomington, IN 47405, USA
bc University of Notre Dame, Notre Dame, IN 46556, USA
bd Purdue University Calumet, Hammond, IN 46323, USA
be Iowa State University, Ames, IA 50011, USA
bf University of Kansas, Lawrence, KS 66045, USA
bg Kansas State University, Manhattan, KS 66506, USA
bh Louisiana Tech University, Ruston, LA 71272, USA
bi University of Maryland, College Park, MD 20742, USA
bj Boston University, Boston, MA 02215, USA
bk Northeastern University, Boston, MA 02115, USA
bl University of Michigan, Ann Arbor, MI 48109, USA
bm Michigan State University, East Lansing, MI 48824, USA
bn University of Mississippi, University, MS 38677, USA
bo University of Nebraska, Lincoln, NE 68588, USA
bp Princeton University, Princeton, NJ 08544, USA
bq State University of New York, Buffalo, NY 14260, USA
br Columbia University, New York, NY 10027, USA
bs University of Rochester, Rochester, NY 14627, USA
bt State University of New York, Stony Brook, NY 11794, USA
bu Brookhaven National Laboratory, Upton, NY 11973, USA
bv Langston University, Langston, OK 73050, USA
bw University of Oklahoma, Norman, OK 73019, USA
bx Oklahoma State University, Stillwater, OK 74078, USA
by Brown University, Providence, RI 02912, USA
bz University of Texas, Arlington, TX 76019, USA
ca Southern Methodist University, Dallas, TX 75275, USA
cb Rice University, Houston, TX 77005, USA
cc University of Virginia, Charlottesville, VA 22901, USA
cd University of Washington, Seattle, WA 98195, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 March 2008
Received in revised form 20 April 2008
Accepted 12 May 2008
Available online 21 May 2008
Editor: L. Rolandi

PACS:
14.80.Ly
12.60.Jv

We present a search for the pair production of scalar top quarks, t̃, using 995 pb−1 of data collected in pp̄
collisions with the DØ detector at the Fermilab Tevatron Collider at

√
s = 1.96 TeV. Both scalar top quarks

are assumed to decay into a charm quark and a neutralino (χ̃0
1 ), where χ̃0

1 is the lightest supersymmetric
particle. This leads to a final state with two acoplanar charm jets and missing transverse energy. We find
the yield of such events to be consistent with the standard model expectation, and exclude sets of t̃ and
χ̃0

1 masses at the 95% C.L. that substantially extend the domain excluded by previous searches.
Published by Elsevier B.V.

Supersymmetry (SUSY) may provide a solution to the hierar-
chy problem if the SUSY particles have masses less than 1 TeV,
strongly motivating the searches for supersymmetric objects at the
Fermilab Tevatron Collider. SUSY predicts the existence of part-
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ners with identical quantum numbers to all Standard Model (SM)
particles except for spin. There exist two spin zero SUSY part-
ners of the top quark corresponding to the latter’s left and right
handed states. Several arguments exist in favor of a light scalar
top quark (t̃). The t̃ mass mt̃ receives negative contributions pro-
portional to the top quark Yukawa coupling in the renormaliza-
tion group equations. This makes the t̃ weak eigenstates lighter
than other squarks [1]. Mixing between the left and right handed
superpartners of the top quark, being proportional to the top
quark mass mt , leads to a large mass splitting between the two
physical eigenstates. This makes one of the t̃ considerably lighter
than the other. Additionally, a light t̃ that strongly couples to
the Higgs boson could also generate a large enough CP violat-
ing phase to explain the mechanism for electroweak baryogene-
sis [2].
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In R-parity conserving models [3], the lightest supersymmetric
particle (LSP) is stable, and cosmological constraints indicate that
it should be neutral and colorless [4]. In the following we assume
conservation of R-parity and take χ̃0

1 , the lightest of four SUSY par-
ticles that result from the mixing between the SUSY partners of the
SM neutral gauge and Higgs bosons, to be the LSP.

In the search reported in this Letter, we consider the range
mt̃ < mb + mχ̃+

1
and mt̃ < mW + mb + mχ̃0

1
, where mb is the b

quark mass, mχ̃0
1

is the χ̃0
1 mass and mχ̃+

1
is the χ̃+

1 mass, with

χ̃+
1 being the lighter of two mass eigenstates resulting from the

mixing of the SUSY partners of charged gauge and Higgs bosons.
The dominant t̃ decay mode in this model is the flavor changing
process t̃ → cχ̃0

1 and is assumed to occur with 100% branching
fraction. The t̃ → tχ̃0

1 decay is kinematically forbidden over the t̃
mass range accessible in this search, and the tree level four-body
decays t̃ → bf f̄ ′χ̃0

1 can be neglected [5].
In pp̄ collisions, t̃ pairs are produced via quark–antiquark an-

nihilation and gluon fusion. The t̃ pair production cross section
(σ

t̃ ¯̃t ) primarily depends on mt̃ , and a weak dependence on other

SUSY parameters affects only the higher-order corrections. At
√

s =
1.96 TeV which is the centre-of-mass energy available at the Fer-
milab Tevatron Collider, σ

t̃ ¯̃t at next-to-leading-order (NLO), calcu-
lated with prospino [6], ranges from 15 pb to 1 pb for 100 � mt̃ �
160 GeV. These cross sections are calculated using cteq6.1m par-
ton distribution functions (PDFs) [7] and equal renormalization and
factorization scales μrf = mt̃ . A theoretical uncertainty of ≈ 20%

is estimated due to scale and PDF choices. The t̃ ¯̃t event topol-
ogy consists of two acoplanar charm jets and missing transverse
energy (/E T ) from the neutralinos that escape detection. Searches
for t̃ pair production in the jets plus missing transverse energy
mode have been reported by collaborations working at the CERN
LEP collider [8], and the CDF [9,10] and DØ [11,12] collaborations.
The highest excluded mass to date is mt̃ < 134 GeV (95% C.L.) for
mχ̃0

1
= 48 GeV [12].

The t̃ search is performed in the data collected with the DØ
detector during Run IIa of the Tevatron and corresponds to an in-
tegrated luminosity of 995 ± 61 pb−1 [13]. A detailed description
of the DØ detector can be found in [14]. The central tracking sys-
tem consists of a silicon microstrip tracker and a fiber tracker, both
located within a 2 T superconducting solenoidal magnet. A liquid-
argon and uranium calorimeter covers pseudorapidity |η| � 4.2,
where η = − ln[tan(θ/2)], and θ is the polar angle with respect
to the proton beam direction. An outer muon system, covering
|η| < 2, consists of layers of tracking detectors and scintillation
counters on both sides of 1.8 T iron toroids.

The data sample collected from April 2003 to February 2006
with the jets + /E T triggers was analyzed for the t̃ search. The trig-
ger conditions require the /H T and its separation from all jets to be
greater than 30 GeV and 25◦ , respectively, where /H T is the trans-
verse energy computed only from jets. Jets are reconstructed using
an iterative midpoint cone algorithm with radius Rcone = 0.5 [15].
The data set is reduced to a sample of 1.5 million events by requir-
ing at least two jets with pT > 15 GeV and /E T > 40 GeV.

Signal samples are simulated using pythia 6.323 [16] for mt̃
ranging from 95 GeV to 165 GeV and χ̃0

1 masses from 45 GeV
to 90 GeV. The largest expected backgrounds for this search are
W and Z bosons produced in association with jets, denoted as
V + jets. The V + jets and tt̄ processes are simulated using alpgen

2.05 [17] interfaced with pythia for the generation of initial and
final state radiation and hadronization. The background samples
for single top quark and diboson production are simulated using
comphep [18] and pythia, respectively. The PDF set cteq6l1 is used
for both signal and background samples, and all generated events
are subjected to full geant-based [19] simulation of the detec-

tor response. Simulated signal and background events are overlaid
with recorded unbiased beam crossings to incorporate the effect
of multiple interactions that occur in a single beam crossing. After
reconstruction, simulated events are weighted properly to ensure
that the instantaneous luminosity distribution is the same in data
and the simulated Monte Carlo (MC) samples. A parametrization
of the trigger efficiency measured from the data is applied to sim-
ulated MC events in order to fold in trigger effects. The multijet
background, not included in the MC samples, is directly estimated
from data.

A large data sample of Z/γ ∗(→ ee) + jets events, correspond-
ing to an integrated luminosity of 1067 ± 65 pb−1, from the same
data period as the t̃ search, is used to improve the prediction of
V + jets backgrounds. For this study, Z boson candidates are se-
lected using two high transverse energy (E T > 15 GeV) clusters
that deposit more than 90% of their energy in the electromag-
netic calorimeter, have shower shapes consistent with expectations
for electrons, are matched with tracks reconstructed in the central
tracker, and form an invariant mass between 65 GeV and 115 GeV.
At least two jets with pT > 15 GeV and |ηdet| < 2.5 are required,
where |ηdet| is the jet pseudorapidity calculated using the assump-
tion that the jet originates from the detector center. The predicted
number of Z/γ ∗(→ ee)+ � 2 jets events is calculated using alp-

gen after correcting for differences in electron and jet reconstruc-
tion efficiencies between data and MC and normalizing the MC to
the inclusive number of Z boson events in data. The alpgen pre-
diction is corrected in each jet multiplicity bin by a reweighting
function that depends on the transverse momentum of the Z bo-
son to obtain better agreement between the model and data. The
reweighting function is derived by fitting the ratio of the trans-
verse momentum distribution of Z boson data to that from the
MC prediction. After reweighting, all other kinematical variables in
the Z/γ ∗(→ ee)+ � 2 jets sample applicable to the t̃ search are
well described by MC.

The multijet background in Z/γ ∗(→ ee) + jets events is esti-
mated from a fit to the dielectron invariant mass distribution. The
ratio of the number of ee events produced by γ ∗ to the combined
number of events produced by Z boson and γ ∗ is determined from
MC. This ratio is used to extract the multijet contribution by fitting
the dielectron invariant mass in data with an exponential function
for the combined contribution from multijet processes and γ ∗ and
a Breit–Wigner convolved with a Gaussian for total number of Z
boson events.

For the t̃ search, the predicted SM background from V + jets
sources is normalized to the number of Z/γ ∗(→ ee)+2 jets events
after subtracting the multijet background, Ndata

Z(ee)+2. As an example,
the normalization weight assigned to simulated Z(→ νν̄) events
with n light partons is

wMC
Z(νν̄)+n = f

Ndata
Z(ee)+2

NMC
Z(νν̄)+n

σ ALP
Z(νν̄)+n

σ ALP
Z(ee)+2lp

εZ(νν̄)+n

εZ(ee)+2lp
. (1)

Here NMC
Z(νν̄)+n is the number of simulated Z(→ νν̄) + n light

parton jets events; σ ALP
Z(νν̄)+n and σ ALP

Z(ee)+2lp are the cross sections
predicted by alpgen for Z(→ νν̄) + n and Z/γ ∗(→ ee) + 2 light
parton jets, respectively; and εZ(νν̄)+n and εZ(ee)+2lp are the cor-
responding detection efficiencies. The factor f = 0.89 ± 0.02 is
applied to correct for three effects: the absence of γ ∗ contribu-
tion to Z(νν̄) + jets events, the normalization of MC light jets to a
data sample that contains all flavors of jets, and the difference in
the luminosities of the data set used for the t̃ search (995 pb−1)
and the Z/γ ∗(→ ee) + 2 jets data set (1067 pb−1).

The normalization weight assigned to simulated W (→ 	ν) + n
light partons is
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Table 1
Numbers of data events and cumulative signal efficiency for mt̃ = 150 and mχ̃0

1
=

70 GeV after each event selection

Selection Events left Signal eff. (%)

Initial selection and trigger 1.5 × 106 55.9
C1: exactly two jets 464477 29.5
C2: /H T > 40 GeV 440161 27.5
C3: 
φ(jet1, jet2) < 165◦ 278505 26.5
C4: jet-1 pT > 40 GeV 216382 24.7
C5: jet-1 |ηdet| < 1.5 113591 24.6
C6: jet-2 pT > 20 GeV 80987 22.0
C7: jet-2 |ηdet| < 1.5 62910 20.1
C8: jet-1 jet-2 CPF > 0.85 49140 19.8
C9: isolated track veto 23832 13.4
C10: isolated electron veto 23194 13.3
C11: isolated muon veto 23081 13.3
C12: 
φmax − 
φmin < 120◦ 9753 12.6
C13: A > −0.05 3733 12.0
C14: 
φ(jet,/E T ) > 50◦ 3375 11.6
C15: /E T > 60 GeV 2288 10.0

wMC
W (	ν)+n = f

Ndata
Z(ee)+2

NMC
W (	ν)+n

σ ALP
W (	ν)+n

σ ALP
Z(ee)+2lp

εW (	ν)+n

εZ(ee)+2lp
α(pT ), (2)

where

α(pT ) =
[ 1
σ NLO

W

dσ NLO
W

dpT
]

[ 1
σ NLO

Z

dσ NLO
Z

dpT
]

[ 1
σ ALP

Z

dσ ALP
Z

dpT
]

[ 1
σ ALP

W

dσ ALP
W

dpT
]
, (3)

is the product of the ratio of the normalized differential cross sec-
tions for W and Z bosons production at NLO [20] and predicted
by alpgen, respectively.

The motivation behind using this technique is to lower the lu-
minosity times cross section uncertainty (≈ 6.1%⊕15%) on the pre-
dicted number of events towards the 5% statistical uncertainty of
the Z/γ ∗(→ ee) + 2 jets normalization sample. The combined 15%
uncertainty on the theoretical cross section for various background
processes is mainly due to the choice of PDF and the renormal-
ization and factorization scale. The signal and smaller backgrounds
such as tt̄ , diboson, and single top quark production are normal-
ized using the measured absolute luminosity. For these processes
NLO cross sections were computed with mcfm 5.1 [21].

The search strategy for t̃ involves three steps which include the
application of the selection criteria on kinematical variables, heavy
flavor (HF) tagging and optimization of the final selection depend-
ing on t̃ and χ̃0

1 masses. The data set for the t̃ search is reduced

to a sample of 2288 potential t̃ ¯̃t candidates, by applying the 15
selection criteria denoted by C1–C15 and summarized in Table 1.
The main motivation for C1 is to reduce the multijet background.
Requirements C2 to C7 help in reducing the W + jets and mul-
tijet backgrounds. The condition on the charged particle fraction
(CPF) in C8 requires that at least 85% of the jets’ charged particle
transverse momenta be associated with tracks originating from the
selected primary vertex in the event. This track confirmation re-
quirement removes events with spurious /E T due to the choice of
an incorrect primary vertex. C9–C11 are applied to reject W + jets
background with isolated leptons from W boson decay. For an
electron to be isolated, the energy deposited in the calorimeter in
a cone of radius 0.4 in η − φ around the electron direction should
not be more than 15% of the energy deposited in the electromag-
netic layers inside a cone of radius 0.2. A muon is declared isolated
if the sum of the energies of all tracks other than the muon in a
cone of radius 0.5 is less than 2.5 GeV, and the calorimeter en-
ergy deposited in a hollow cone with inner and outer radii 0.1
and 0.4 around the muon direction is less than 5 GeV. A track
with pT > 5 GeV is considered isolated if no other track with
pT > 1.5 GeV is found in a hollow cone of inner and outer radii 0.1

and 0.4 around the track considered. This condition also helps sup-
press backgrounds with τ leptons where the τ decays hadronically.
Remaining instrumental background is removed using a quantity
defined by the angular separation between all jets and the /E T

of the event, D = 
φmax − 
φmin, where 
φmax(
φmin) is the
largest (smallest) azimuthal separation between a jet and /E T ; and
an asymmetry variable defined as A = (/E T − /H T )/(/E T + /H T ). The
requirements applied on these variables are given by C12 and C13.
Fig. 1 shows that both of these variables are very effective in elim-
inating multijet background which dominates in data for large D
and negative A.

The 2288 events selected in data can be compared to the
2199 ± 18+316

−321 events predicted from the simulation normalized
to Z/γ ∗(→ ee) + 2 jets events or 2292 ± 19+527

−532 events predicted
using absolute luminosity normalization, with the first quoted un-
certainty due to finite MC statistics and the second due to system-
atic effects described in more detail below. The small remaining
multijet background in the t̃ search analysis is estimated after ap-
plying all analysis conditions shown in Table 1 except that on /E T .
The SM V + jets background contribution, estimated from the
MC, is subtracted from the data before fitting the /E T distribution
with exponential and power law functions in the control region
(40 < /E T < 60 GeV). To estimate the multijet contribution in the
signal region, we extrapolate the fit results to /E T > 60 GeV. The
average of the two fit results is taken as the multijet background
estimate, while the difference between the two is taken as the sys-
tematic uncertainty. This amounts to 14.4 ± 10.7(stat) ± 5.1(sys)
events contributed by multijet background before HF tagging and
optimization of selection cuts.

After selecting candidate events on the basis of topology, HF
tagging is used to identify charm jets in the final state. A neural
network (NN) tagging tool [22] that combines information from
three different DØ HF taggers to maximize the b quark tagging
efficiency (≈ 73%) is used for this purpose.

The first tagger converts information from the impact parame-
ter of the tracks identified in a jet into a probability that all tracks
originate from the primary vertex, where the impact parameter is
the distance of closest approach to the interaction point in a plane
perpendicular to the beam axis. The second tagger identifies the
presence of vertices that are significantly displaced from the pri-
mary vertex and associated with a jet. The third tagger makes use
of the number of tracks with large impact parameter significance,
where the significance is defined as the ratio of the impact pa-
rameter to its uncertainty. The result of the combination is a NN
output. A requirement on the NN output is made that preserves
high efficiency for detection of charm jets (≈ 30%) with a ≈ 6%
probability for a light parton jet to be mistakenly tagged. The ef-
ficiency for c jet tagging is obtained by scaling the b jet tagging
efficiency measured in the data by the c-tagging-to-b-tagging effi-
ciency ratio computed in the MC.

At the final stage of the analysis, additional selection criteria on
three kinematic variables; /E T , S = 
φmax + 
φmin, and HT , with
HT defined as the scalar sum of the pT of all jets, are optimized
by maximizing the expected lower limit on the neutralino mass
for a given mt̃ . The variable S after requiring at least one jet in the
event to be HF tagged is shown in Fig. 2.

Minimum values of HT are varied from 60 GeV to 140 GeV
in steps of 20 GeV, while those for /E T are varied from 60 GeV
to 100 GeV in steps of 10 GeV. Events having the values of these
quantities above the minima are kept. Maximum values of S are
tested between 240◦ and 320◦ in steps of 20◦ , and events having S
below the minimum are retained. For each set of requirements,
the expected value of the signal confidence level 〈C Ls〉 [23] under
the hypothesis that only background is present is evaluated using
all t̃ and χ̃0

1 mass combinations, taking into account systematic
uncertainties. The set of criteria that return 〈C Ls〉 = 0.05 for the
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Fig. 1. Distributions of the asymmetry A = (/E T − /H T )/(/E T + /H T ) with the requirement on D = 
φmax − 
φmin inverted (a) and applied (c). Distributions of D with the
requirement on A inverted (b) and applied (d) for data (points with error bars), for SM backgrounds (histogram), and for a signal with mt̃ = 150 GeV and mχ̃0

1
= 70 GeV

(hatched histogram). In all plots the signal contribution has been scaled up by five and /E T > 60 GeV is required. The excess in data at A = 0 and D = 0–10 degrees is
consistent with the systematic uncertainties on the predicted background.

Fig. 2. Distributions of S = 
φmax + 
φmin for data (points with error bars), SM
background (histogram), and a signal with mt̃ = 150 GeV and mχ̃0

1
= 70 GeV

(hatched histogram) after requiring HF tagging but before optimization.

Table 2
Optimized values of selections, numbers of observed data and predicted background
events. A requirement of /E T > 70 GeV was chosen in all cases. The values of mt̃ and
HT are in GeV while those for S are in degrees

mt̃ HT S Observed Predicted

95–130 > 100 < 260 83 85.3 ± 1.8+12.8
−13.0

135–145 > 140 < 300 57 59.0 ± 1.6+8.5
−8.8

150–160 > 140 < 320 66 66.6 ± 1.1+9.6
−10.0

Table 3
For three t̃ and χ̃0

1 mass combinations: signal efficiencies and the numbers of signal
events expected. The first errors are statistical and second systematic. The nominal
(NLO) signal cross section and upper limit at the 95% C.L. are also shown

(mt̃ , mχ̃0
1

)

GeV

Efficiency
(%)

Expected signal
events

σnom

pb
σ95

pb

(130,55) 1.5 51.9 ± 2.7+7.2
−7.1 3.44 2.41

(140,80) 0.9 19.6 ± 0.8+2.8
−2.5 2.24 2.87

(150,70) 2.1 30.8 ± 1.2+4.2
−3.7 1.49 1.42

highest neutralino mass corresponding to a given mt̃ are chosen to
be the optimal ones.

Fig. 3. Distributions of HT after applying optimized requirements on /E T and S
for data (points with error bars), SM background (histogram), and a signal with
mt̃ = 150 GeV and mχ̃0

1
= 70 GeV (hatched histogram).

The optimized values of the selections for different mt̃ are
given in Table 2 along with the number of events observed in
data and expected SM background. In all cases a requirement of
/E T � 70 GeV is imposed. No contamination remains from multijet
background at this point in the analysis; it is therefore neglected
while setting the limit. Efficiencies for three signal mass points
along with the expected numbers of events are shown in Table 3.
The distribution of HT after optimization but with the constraint
on HT removed is shown in Fig. 3. The final distribution of /E T is
shown in Fig. 4. The detailed SM background composition is given
in Table 4.

Systematic uncertainties are evaluated for each t̃ and χ̃0
1 mass

combination for the optimized set of requirements. Sources of sys-
tematic uncertainty include jet energy scale, jet energy resolution,
jet identification and reconstruction, the jet multiplicity require-
ment, trigger efficiency, data to MC scale factors, normalization of
background, HF tagging, luminosity determination, choice of PDF,
and W boson pT reweighting. The effect of the jet multiplicity re-
quirement on the background is studied using Z/γ ∗(→ ee) + jets
events. The spectrum of transverse momentum of the third jet in
data events with three or more jets is observed to be very well de-
scribed by the simulation generated with alpgen. The ≈ 1% statis-
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Table 4
Numbers of predicted background events from different SM sources for a selection
optimized for mt̃ � 150 GeV. The uncertainties are due to the limited MC statistics

SM process Number of events

W (→ 	ν) + jets 20.0±0.7
Z(→ νν̄) + jets 15.8±0.5
W (→ 	ν) + HF (bb̄, cc̄) 12.6±0.5
Z(→ νν̄) + HF (bb̄, cc̄) 11.6 ±0.4
tt̄ and single top 3.7±0.1
W W , W Z , Z Z 2.7±0.1
Z(→ 		) (e,μ, τ ) + jets 0.1±0.01
Z(→ 		) (e,μ, τ ) + HF (bb̄, cc̄) 0.1±0.01

Total 66.6 ±1.1

Fig. 4. Final distributions of /E T for data (points with error bars), SM background
(histogram), and a signal with mt̃ = 150 GeV and mχ̃0

1
= 70 GeV (hatched his-

togram).

tical uncertainty of the lowest pT bin, where the bulk of the events
are, is taken as a systematic uncertainty introduced by the jet mul-
tiplicity requirement. To study the effect of the same requirement
on the t̃ signal, where a third jet enters an event primarily through
initial or final state radiation, the pT spectrum of the leading jet in
simulated Z/γ ∗(→ ee) events generated with pythia is examined.
Comparison between data and simulation shows a slight excess in
data in the low pT bin; this discrepancy is used to estimate a sys-
tematic uncertainty of ±1.5% on the signal acceptance attributable
to the jet multiplicity requirement. The uncertainty on the signal
acceptance and background estimation due to the PDF choice was
determined using the cteq6.1m PDF set.

The combined 10% uncertainty on the background normaliza-
tion includes: 5% uncertainty from Z/γ ∗(→ ee) + jets statistics
assigned to all V + jets samples; 50% uncertainty on the NLO cross
section assigned to the V + HF background; 6.1% luminosity uncer-
tainty assigned to tt̄ , diboson, and single top quark background;
and 8%, 6% and 15% uncertainties on NLO cross sections for tt̄ ,
diboson, and single top quark production, respectively. The un-
certainty on the background estimation due to the W boson pT

reweighting is estimated using two different methods to estimate
the W + jets background. In the first method, the W + jets back-
ground is estimated using the expression given in Eq. (2). In the
second method, the same reweighting function as applied to the Z
boson was used to reweight the W boson pT which is equivalent
to setting α(pT ) = 1 in Eq. (2). Detailed estimates of all systematic
uncertainties are given in Table 5.

Using the assumption that t̃ decays into a charm quark and a
neutralino with 100% branching fraction and the nominal t̃ pair
production cross section, the largest mt̃ excluded by this analysis is
155 GeV, for a neutralino mass of 70 GeV at the 95% C.L. With the
theoretical uncertainty on the t̃ pair production cross section taken

Table 5
Breakdown of systematic uncertainties on the SM background and for a signal point
with mt̃ = 150 GeV and mχ̃0

1
= 70 GeV

Source SM background Signal

Jet energy +1.7% +2%
Scale −2.5% −4%
Jet resolution ±1% ±1%
Jet reconstruction and identification ±0.8% ±0.1%
Trigger ±6% ±6%
Scale factor ±5% ±5%
Normalization ±10% –
Luminosity – ±6.1%
HF tagging ±4.1% ±3.5%
PDF choice ±4% +8.7%

– −5.5%
Two jet cut ±0.9% ±1.5%
W boson pT reweighting ±3% –

Fig. 5. Region in the t̃–χ̃0
1 mass plane excluded at the 95% C.L. by the present

search. The observed (expected) exclusion contour is shown as the brown solid
(dashed) line. The yellow band represents the theoretical uncertainty on the scalar
top quark pair production cross section due to PDF and renormalization and factor-
ization scale choice. Results from previous searches [8,10,12] are also shown. The
results from [10,12] correspond to the observed limits obtained with the one sigma
lower bound of the predicted NLO cross section for stop pair production. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to
the web version of this Letter.)

into account, the largest limit on mt̃ is 150 GeV, for mχ̃0
1

= 65 GeV.

These results are shown in Fig. 5.
In summary, DØ has searched for scalar top quarks in jets plus

missing transverse energy final states using 1 fb−1 of data. No
evidence for t̃ production has been found. This analysis substan-
tially extends the excluded region of the t̃–χ̃0

1 mass plane over the
searches carried out previously.
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